Cleaner Electricity Production

Producing electricity is often a dirty and polluting affair. Here in the US most is still produced by burning coal, rather like in the 19th century. Nuclear power production is seen by some as an answer as it doesn’t throw a tone of gasses and toxins into the atmosphere and can produce an enormous amount of power in comparison to the fuel it uses. But nuclear power brings its own sets of problems, you only have to look at recent events in Japan or take a trip to Ukraine to see that. And parts of the North Sea round the British Isles are contaminated from leaks from an infamous UK nuclear power station that shall remain nameless (although like New York it too was so good they named it twice) and the unforeseeable problems involved in storing radioactive waste for tens of thousands of years to name but a few rather thorny issues.

However some people that define themselves as fighting for a cleaner environmental electricity production policy, do argue that nuclear power is a move in the right direction, that alternative forms could never provide enough power to feed the planet and the very fact that nuclear power production does not create tons of carbon means it is advantageous in fighting the possible problems of global warming. There are undoubtedly advantages and disadvantages to this form of power production, but political and financial interests are also important factors to bear in mind.

Clean electricity for a better world

There are several other ways of producing cleaner electricity though as we know, but they too have their problems. Building a dam to use the water to drive turbines can have devastating effects on the surrounding areas. Look at the Yangtze Dam project in China and the effect of this engineering project on the people and animals that used to inhabit the newly flooded areas.

Wind farms also seem a good solution but some people say they are ugly and here in Cape Cod in the US there is a large protest movement growing out of claims by people that live near wind turbines who claim health problems, stress and migraines due to the flickering effect of the blades turning in the sun.

Solar panels are always sold as a good option, but they are expensive to manufacture because processed silicon is costly due to its high demand. There are also the problems of how to dispose of the panel when it is no longer efficient and the nature of the silicon purification process.

In Italy farmers have taken government subsidies and covered their land with solar panels in a bid to improve profits. In some cases the panels form a sort of protection for the crops while they produce electricity, but in a lot of cases the agricultural land is just lost to a sea of silicon, causing people to complain both about the aesthetics and the land use issue. Government green incentives mean that there is no need to ask for planning permission so these ‘silicon farms’ as they are known are cropping up in some rather inopportune places (sorry, couldn’t resist the pun) and are in massive expansion as this article demonstrates.

But fortunately as we would hope in a blog like this there have been some really interesting developments recently in non silicon based solar energy production that we can look at.

The sun between someones hands

Harnessing the sun

A couple of years ago researchers in Italy unveiled something called the Dye Solar Cell (DSC). It doesn’t use silicon to produce electricity but guess what? It uses vegetable dye from egg plant (aubergines). Well not being a scientist myself I thought, ‘yes, plants do photosynthesis don’t they, why didn’t I think of that?’, and I wasn’t far wrong.

The cells don’t have the same productive power so the area needs to be bigger to produce the same amount of power but they are incomparably cheaper and greener. Ideal for use for example on large low buildings such as barns or industrial units that can have the entire roof covered in vegetable cells and produce the electricity the occupants require for free. Good news.

But what if you haven’t got a huge roof? Well an Austrian company called Bleiner AG has developed a type of paint called Photon Inside that has the same capability. It has to be applied in a few coats and cost more than standard paint but a 50 square metre wall generates 3 Kw of electricity. It was developed for use on sailing boats so that they could operate a radio and radar while out at sea. Sorry but the only articles I can find online are in Italian.

Konarka is an interesting American company who have developed a power generating plastic. It can be made very thin and comes in a roll that you just cut to size, stick on your Venetian blinds or any other surface that takes a lot of sun and away you go. They also sell Power Fibre, as you would imagine it is a thread that you can weave, so you can make textiles that produce energy and can be made into clothes. I like this idea, you could buy a computer case that charges the computer using sunlight as you walk to work.

At the Massachusetts Institute of Technology (MIT) they have recently unveiled their ability to print solar panels on to paper. A great breakthrough as it makes the technology easy to transport and place in position but also cheap and hardwearing (you can laminate it). Research at the University of Verona in Italy goes one step further, they are developing completely transparent thin sheets of solar panels that you can attach to the window and look through.

These final applications described above really take solar electric production to a higher level, as practically any surface can be used to produce electricity. The breakthrough here is in the technology required to transport the current more than its production, as attaching the diodes has long been the most difficult part of thin surface electricity production as they tend to come off with any movement in the surface.

Using the sea is also an option. Off the UK there is the giant Sea Snake trial taking place as well as the Oyster wave generator installation, and in the US buoys have been developed that generate electricity from their constant up and down motion, easy to place and a help rather than a hindrance to shipping.

As Christopher pointed out in a recent post, global warming is a real and serious problem and electricity production could be a major element in pollutant gas production, but as I hope to have shown above there are many interesting developments if we allow ourselves a slightly different point of view on electricity management.

A less centralized way of thinking and we could produce a lot of the electricity we need in situ, using our own buildings as power plants.

I have written more extensively on this problem on the Bassetti Foundation website and there are also various related articles about renewable energy sources and the problems involved in their use.

Next week I will have a look at possible engineering solutions for the problematic issue of global warming.

Cutting Fuel Emissions from Transport Systems

In this the second post of my series about environmental conservation issues, I look at technology whose use could contribute to lessening the planet’s dependency on fossil fuels.

One of the major concerns for the environmental lobby is, and has for a long time been, the environmental cost of transport systems. As we know the vast majority of goods and people use petrol as a propellant, produce lots of pollutants and don’t do the planet any good whatsoever.

There are various option however that are readily available today for cutting down on petrol use, and in this post I would like to introduce a few.

The internal combustion engine is a simple machine, an explosion in a chamber forces a piston out and that is attached to a rod that drives a wheel (or 4 in most cases), but it is a simple operation to exchange the explosion for another form of inertia. We can in fact run a standard vehicle on air, as these plans show.

An air powered engine

Plans for an Air Engine

In 2010 for example the Royal Melbourne Institute of Technology unveiled a prototype of a motorbike powered solely by compressed air. The project was created by lecturer Simon Curlis and carried out by a team of students. Curlis’s goal was to produce an emissions free motorbike capable of travelling at more than 100 miles per hour, a feat that went on to achieve on a dried up lake in Australia. Take a look at this report for further details.  

The motorbike is a standard Suzuki GP 100 frame fitted with a rotary engine and a couple of tanks of compressed air stored under the bodywork. A wonderful idea, but you just have to bear in mind that compressed air is highly explosive and doesn’t produce as much power as petrol, but is of course emissions free!

But we can address one of these problems as well as the cold hands in winter issue by investing in an AIR car.  In order to resolve the problem of having to store huge quantities of air the AIR car has a small petrol driven compressor that refills the tanks when they are low. The fuel required to maintain this system is incomparable, with the owners claiming at least 100 Km to two litres of fuel, with the advantage that you don’t need to use any petrol at all in town, you just run the compressors during out of town driving.

The development company that produce the cars above have signed a deal with TATA, and hope to produce production models soon, and they have several different models today including a small urban transport bus. Several US manufacturers are also following suit.

If a life on the ocean waves is more your scene take a look at the largest solar powered ship, currently sailing round the world. The 60 ton Planet Solar is an impressive looking catamaran, and can sail for 3 days without even seeing the sun due to its enormous production capacity and batteries. You can check it out via this video on YouTube.

The ship above may look like an expensive toy for boys, (as does this fuel free solar powered aeroplane), but solar powered sails do exist and are in use on commercial freighters. A company called Eco Marine Power produces rigid sails that not only harness the wind on large cargo ships but also produce electricity as they are in effect giant solar panel sails. Click here for a photo and description of their research. Ironically enough they are best suited to oil tankers, as they don’t have the problem of cranes for cargo that get in the way.

And talking about sailing ships another company called Sky Sails produces a large Kite that you attach to the front of your ship to harness the wind. On a 25000 ton ship the 320 square metre kite lowers fuel consumption by about 30%. Hardly new technology though, Sir Francis Drake knew how to do it!

Shipping may not strike you as particularly relevant to this argument but you might be surprised. Shipping is the main cause of sulphur emission into the atmosphere, and the problem is political in nature. At sea you can burn anything you want and so the shipping companies buy and burn something called heavy or bunker fuel, in short the dregs of the petroleum refining industry. Extremely polluting and damaging to the health. Had you ever noticed how much smoke a ship makes when it is steaming into the distance?

A schooner sailing vessel

Schooners are still in use across South East Asia

On a personal note I would just like to add that sailing ships are still used across South East Asia to transport goods. I saw lines of men and women carrying sacks of grain on their backs up planks on to wooden ships with my own eyes no more than 10 years ago. The photo above gives you an idea, although I did not take it. These wooden schooners are sailed to larger ports where they are unloaded by hand and their goods (sacks of foodstuffs) are left in piles that are then craned onto big ships and sent to Europe, unfortunately not by sail and producing a lot of smoke!

I haven’t addressed the related issue of bio fuels for use in transport in this article but will do so in a later post. Next week I will take a look at alternative forms of electricity production and new technological developments on that front.

Can We Improve the Health of the Planet? A Series.

“Have a bias towards action – let’s see something happen now. You can break that big plan into small steps and take the first step right away.” – Mohandas Karamchand Gandhi

A couple of weeks ago I read Christopher’s article on this blog entitled ‘We Need to Act on Climate Change For The Sake Of Others’ and it started me thinking about green technology.

Scientists are in general agreement that the Earth is warming, there is plenty of debate as to why however. A large proportion claims that this warming factor is caused (or at least worsened) by human actions such as burning fossil fuels and deforestation.

Members of this group therefore believe that we need to produce energy without burning fossil fuels and that we should take other steps to avoid releasing carbon into the atmosphere such as stopping deforestation (incidentally this is cause number 1, burning fossil fuels is secondary in comparison). I should say I count myself amongst them.

An unhealthy planet

Every Thursday over the next month or so I am going to post one of a series of articles that will look at different aspects of these problems. I want to propose an argument that I borrow from the sociological study of science and is directly drawn from an economic analysis. It is simple, and should be borne in mind when reading the posts.

When we think about costs we only think about money. How much for example does a litre of petrol cost? Or a flight to Boston from London? “Oh $3.50 a litre” or “$1200 dollars” we might say. But this excludes social and environmental costs that should be added on, a bit like governments add on VAT.

The real cost of my litre of petrol should include various other factors. How did the raw materials come out of the ground? Did the company leave a mess and pollute the local drinking water in the process? How was it refined, and transported? How much did the local people who live nearby suffer or benefit from its production? And finally how much pollution will it cause when I burn it?

And here we have a sliding scale, LPG is environmentally less damaging and therefore environmentally cheaper than petrol. By this logic natural gas might be cheaper than wood to heat your house too (unless produced through fracking some would argue), and taking the train might be cheaper than taking the bus. I hope this is a little clearer than a bland phrase about ‘going green’  and offers a slightly more defined point of view.

The series will be structured something like the following:

  • Environmentally cost efficient transport
  • Electricity production
  • Engineering climate change
  • Problems faced and the miracle cure
  • Conclusions and a review of comments

I hope to present you with some interesting new technologies that really offer a much ‘greener’ future, as well as looking at some of the ways that different institutions view and approach the problems that I will address.

I am certainly not pessimistic about the future but I don’t believe that ‘technology will save the day’ on its own, but a little thought and a few small actions from a lot a people can make an enormous difference (as someone once said).

I hope you will follow and comment, and don’t hold back on your criticisms, that is what I am here for.