GM Salmon


Food Revolution?

The news is out, the revolution has begun. The US Food and drug Administration has passed the first ever GM animal for food consumption, and it is a fish.

This week a company gained a license to sell their new breed of GM salmon. It is modified, although it has genes from a different type of salmon, so not as Frankenstein as some other combinations, but that of course does not mean that this will always be the case. But I don’t want to be a scaremonger, they say it is safe (although that is of course based upon the company’s evidence), and so the choice is yours.

The new food is merely a type of Atlantic salmon injected with a gene from Pacific Chinook salmon to make it grow faster, but critics raise questions about safety, possible cross breeding and whether the general public even wants to eat GM fish. Without being too corny though it does raise questions of floodgates. First a cross salmon, then what comes next?

Oh but we can choose of course whether we want to eat it or not. But that requires information. Will it be labelled as a GM food? Well it won’t in the USA. That is because GM produce is viewed by the administration as being nutritionally equal to non GM, and so does not require labelling. Well to be exact it is voluntary. So if you want to sell it as science, advancement in nutrition, the way forward and futurism, you can label it, but if you want to slide it in unnoticed, then Bob’s the word.


It is about making it quicker and cheaper. A fish that will grow all year round gets bigger in half the time, so you can eat it earlier. You can farm it in tanks near the city, so it cuts down on various environmental pollutants and practices, but of course creates others.

And where to next? Surely in a few years there will be giant cows that grow to adulthood at twice the speed, and maybe sheep with dreadlocks?

Animal farming for foodstuffs is grizzly enough at is is (was), but now maybe we open another chapter.

I don’t want to put any links in this post, a quick search will find what you need. This is merely a personal opinion post, and I would like to hear others. The photo above is quite telling though, they are supposedly salmon of the same age, but one has been modified. Can you guess which one?

Continuity in Renewable Energy


Renewable Energy

Here at Technology Bloggers we are all great fans of renewable energy developments, so I was extremely interested in a project that has just received funding on the Northern Irish coast.

As we all know there are problems with wind and tidal electricity generation, not least due to the weather, lack of wind, sun and sea swell being the obvious thoughts. But developers have an interesting proposal that may work towards alleviating some of these problems.

The idea is to use excess power to compress air and store it in huge caverns underground, to then use it to drive turbines when the wind drops. Sounds like a great idea, but of course there are always pros and contras for these things.

The caverns have to be mined, about 1.5 km below ground, and this will be done using a salt water erosion process. Simply put, a bore is drilled down, water pumped in that will circulate as if in a bottle, erode the surrounding rock salt and be washed out of a drain hole into the sea. The salt solution that comes out with then disperse into the wider sea.

When the cavern is ready, wind turbines will be used to force air into them, which can then be released in a controlled manner to turn turbines on days when you couldn’t dry a handkerchief in the back garden.

Environmental Concerns

So it sounds great, but there are of course those who argue that it is not a good idea. What will the impact be of pumping all of this salt solution into the sea? I think everyone concerned realizes that it will kill wildlife over an area, but how big that area might be, how long it will take to recover and how much damage it will do seems to be under debate.

Some locals suggest that it might lead to an industrial wasteland.

More is explained on this BBC report. Once again a new and possibly extremely positive power development brings the many complexities surrounding renewable energy sources. Issues of responsibility loom large, as do issues of public engagement and risk.

One to follow.

Digital Amnesia

digital amnesia figures

Digital Amnesia

When someone asks me for my mobile number, I take one of my business cards out of my wallet so I can read it to them. Now I have only had this number for a year, but I haven’t learnt it yet. I don’t know my wife’s phone number either. I just look her up in the contacts of my phone by name. I can however remember my first girlfiend’s mum’s home number, going back to about 1982.

Of course in those days we did not have machines that remembered your life for you. I remember having to arrange to meet someone at a certain time and in a certain place before leaving the house, oh how quaint. And believe it or not, not only did our brains keep in all that extra information (which seems to have made them work better I might add), but we were also freeer.

Free because once you were out of the house you were in effect offline. No calls from work, no-one asking you why you are late, or more to the point where you are. “Where were you? I tried calling but you did not answer!” Oh so now I am obliged to both carry my phone and answer it otherwise moral judgements will be made about me, where is the freedom in that?

And these developments have lead to parents and friends worrying more. Now I have a phone so if you start thinking about me you can send a text. In the past you couldn’t do that, so you worried less. There was no point in worrying because you could do nothing about it. And what happens if your phone runs out of charge? Then you really are in trouble, it is almost as bad as your life support system breaking down.


But where is the evidence I hear you ask, for these glory days when people could remember where they were supposed to be, had diaries and used pens to make appointments.

Here. Read it and weep.

The BBC is reporting a UK study carried out through Kaspersky (see the stats above in the picture), that seems to demonstrate that reliance on digital technology is causing a loss of memory capacity. The belief that we can just access information whenever we need it has brought us to this point. But the limitations are obvious. When I lose my phone I cannot even phone home on somebody else’s. I don’t know the number.

Maybe the brain needs exercise too. Stretching is always good, and I must say that this is probably true of brain use. As I have once before mentioned, learning a language is great for your brain function, but many might not bother now we have real time translation tools. But I should say that I am not against these things, my life would be much more complicated without the famous online translation tool that I use every day.

I remember an article on this blog about the power of the human brain, it is incompably good to digital technology, let’s exercise it and keep it fit.


3D Printing Developments


3D Printing

3D printing is great, but it does have its downsides. Take a look at this article for example, it gives some idea of possible applications and uses for the technology.My colleague Christopher wrote that one, and it is a joy to see some young and optimistic blood writing about technology. As an old pessimistic dog however, I cannot overcome my cynical streak. Check out this article that I wrote about possible negative effects upon health related to 3D printing.

Anyway, on a blog with the grandeur of this one there is room for everything, and today I am going to dive into the abyss of optimism!

Now when we think of 3D printing we often think of small plastic models, and we all know that plastic is a problem for the world. It is cheap, does not degrade, you cannot get rid of it, it washes into plastic floating islands and it’s made from oil. But 3D printing offers much more than plastic models today.

Alternative Materials

A Dutch design company plans to use special robots to 3D-print a steel bridge across the Amsterdam Canal. A company called MX3D, which specializes in using robotics to 3D print, and Dutch designer Joris Laaram are behind the project. You see these kids can print with metal, as can the people who supply parts for Boeing, and use is far more common that we might imagine.

But MX3D go one better. They can print metals in position, so not in a lab or workshop but wherever they want, outside, in the open air, or over a canal. So they have robots that can build a bridge on site using 3D printing technology, as they sit on the half constructed bridge.

But that is not the end of it, of course. Printers can also use recycled products to produce artifacts. Plastic is a simple idea, but what about other materials? What about food waste? Well obviously you can.

Food Waste

Italy-based designer Marina Ceccolini is doing some experimenting in the field. Inspired by the rigidness of a dehydrated tangerine peel, the designer began creating her own potential 3D printing material called AgriDust. Ceccolini’s AgriDust is made from foods found in her local landfill: everything from coffee grounds to peanut shells, orange and lemon peels, tomato skins, and bean pods. Held together with potato starch Ceccolini believes that using a paste extruder, the material could be 3D printed into new objects. The 64.5% waste/35.5% binder composition could, the designer proposes, limit the plastic waste generated by 3D printers.

Now Check out this article, it describes everything and includes an interview with the designer.

One thing that comes to mind however is the problem of allergies. Can you make something that contains nuts? I doubt it. But the idea sounds really promising to me. And I certainly look forward to watching the bridge go up, it’s just down the road (or canal) from here.